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Interaction of a deep-water wave with a cylinder gives rise to ordered patterns of
the flow structure, which are quantitatively characterized using a technique of high-
image-density particle image velocimetry. When the cylinder is stationary, the patterns
of instantaneous flow structure take on increasingly complex forms for increasing
Keulegan–Carpenter number KC. These patterns involve stacking of small-scale
vorticity concentrations, as well as large-scale vortex shedding. The time-averaged
consequence of these patterns involves, at sufficiently high KC, an array of vorticity
concentrations about the cylinder.

When the lightly damped cylinder is allowed to undergo bidirectional oscillations,
the trajectories can be classified according to ranges of KC. At low values of KC, the
trajectory is elliptical, and further increases of KC allow, first of all, both elliptical
and in-line trajectories as possibilities, followed by predominantly in-line and figure-
of-eight oscillations at the largest value of KC.

Representations of the quantitative flow structure, in relation to the instantaneous
cylinder position on its oscillation trajectory, show basic classes of patterns. When
the trajectory is elliptical, layers of vorticity rotate about the cylinder surface, in
accordance with rotation of the relative velocity vector of the wave motion with
respect to the oscillating cylinder. Simultaneously, the patterns of streamline topology
take the form of large-scale bubbles, which also rotate about the cylinder. When the
cylinder trajectory is predominantly in-line with the wave motion, generic classes of
vortex formation and shedding can be identified; they include sweeping of previously
shed vorticity concentrations past the cylinder to the opposite side. Certain of these
patterns are directly analogous to those from the stationary cylinder.

1. Introduction
The interaction of a free-surface wave with a vertical cylinder is representative of

a variety of situations in the field of ocean engineering, whereby the cylinder takes
the form of a riser in an offshore drilling platform, or a cable in an ocean monitoring
system. Such interactions can give rise to substantial loading and, if the cylinder
is elastic, or elastically mounted, complex forms of cylinder response can occur.
Characterizations of both the loading and response are challenging, as the wave
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motion is oscillatory. That is, the wave velocity undergoes large excursions in both
magnitude and direction, in contrast to the unidirectional flow of a steady current.

A wide variety of related investigations have provided considerable insight into
wave–cylinder interaction. They extend from one-dimensional oscillations of a cylinder
in quiescent fluid or, conversely, oscillations of fluid past a stationary cylinder, to the
fully complex case of an actual wave past the cylinder. An overview of these classes
of investigations is provided by Sumer & Fredsøe (1997).

Stationary cylinder in oscillatory flow. One-dimensional oscillatory flow past a sta-
tionary cylinder or, equivalently, one-dimensional oscillations of a cylinder in quiescent
fluid, have yielded considerable insight. Sarpkaya & Isaacson (1981) provide an
overview of early investigations, which extends over ranges of: Keulegan–Carpenter
number KC= Um/fwD, in which Um is the peak velocity amplitude of the flow past the
cylinder, fw is the wave frequency, and D is the diameter of the cylinder; and the Stokes
number fwD2/ν, in which ν is the kinematic viscosity. Representative investigations
include those of Bearman et al. (1981), Honji (1981), Ikeda & Yamamoto (1981),
Iwagaki, Asano & Nagai (1983), Williamson (1985a), Sarpkaya (1986), Obasaju,
Bearman & Graham (1988) and Tatsuno & Bearman (1990). As a result of these
investigations, the admissible vortex patterns that occur over a range of KC have
been defined and, in selected studies, are related to the unsteady loading on the
cylinder.

Stationary cylinder in wave. Yang & Rockwell (2002) considered interaction of an
intermediate-depth wave with a vertical stationary cylinder, with emphasis on quantit-
ative patterns of the spanwise flow structure, which exhibited various modes that could
be related to the magnitude of the unsteady loading on the cylinder. In a subsequent
study, which focused on the interaction of a deep-water wave with a cylinder, Yang
& Rockwell (2004) and Ozgoren & Rockwell (2004) determined both the quasi-
two-dimensional and three-dimensional patterns of the flow structure, in relation
to the exponential decay of the wave amplitude with depth, and the magnitude of
the unsteady loading on the cylinder. The basic features of qualitatively determined
patterns of vortex formation, described in the investigations in the preceding section,
are replicated well in the deep-water wave.

Transverse vibrations of cylinder. One-dimensional (non-orbital) oscillatory flow past
an elastically supported cylinder, arranged such that only transverse vibrations could
occur, has been addressed by Sarpkaya & Rajabi (1979), Bearman & Hall (1987),
Sumer & Fredsøe (1988), and Kozakiewicz, Sumer & Fredsøe (1997). Most of these
investigations emphasize the importance of the natural frequency fn of the elastically
mounted cylinder, the wave frequency fw and the cylinder vibration frequency fv .

Similar characterizations, but for the case of an elastically mounted cylinder in an
actual free-surface wave, have been pursued by Angrilli & Cossalter (1982), Kaye &
Maull (1993) and Hayashi & Chaplin (1998). All of these investigations found a
resonant response at integer values of fn/fw , and, furthermore, Hayashi & Chaplin
(1998) discovered that such a response can also occur at non-integer values, if the
elastically mounted cylinder has sufficiently light damping.

In-line vibration of cylinder. Williamson (1985b) performed one-dimensional oscil-
latory experiments and predicted the resonant response of in-line vibrations. Li,
Zhan & Lau (1997) considered both regular and random wave motion during an
experimental and theoretical study for a horizontal elastically mounted cylinder.
Anagnostopoulos, Iliadis & Ganoulis (1995) performed a numerical simulation of
in-line oscillations in a one-dimensional wave and assessed the magnitude and phase
of the in-line response.
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Bidirectional vibrations. If simultaneous transverse and in-line vibrations are allowed
to occur, bidirectional vibrations can arise, giving rise to complex forms of cylinder
trajectories. A number of investigations have employed a rigid cylinder, which
is attached to a bidirectional cantilevered joint, or an equivalently flexible joint.
Investigations that employ this configuration include Sawaragi, Nakamura & Miki
(1977), Isaacson & Maull (1981), Zedan et al. (1981), Borthwick & Herbert (1988),
Kaye (1989) and Kaye & Maull (1993). Taken together, these investigations could
demonstrate that a resonant response can occur at integer values of fn/fw , and,
furthermore, a wide range of admissible trajectories can occur.

A somewhat different method of elastically mounting the cylinder, i.e. a spring
system on either end, was employed in the investigation of Lipsett & Williamson
(1991, 1994), who addressed the case of one-dimensional wave motion past the
cylinder. They were able to classify the possible cylinder trajectories on maps of KC
versus fn/fw , and showed that simple mathematical models allowed prediction of the
limit cycle trajectories.

For those investigations described in the foregoing for which the mass-damping
parameter m∗ζ is specified, values ranged from 0.044 to 0.44. Of all of the previous
investigations of bidirectional oscillations, characterization of vortex patterns, in
direct correspondence to the bidirectional trajectories of the cylinder, were pursued
only by Sawaragi et al. (1977), Borthwick & Herbert (1988) and Kaye (1989), who
qualitatively visualized the vortex pattern at the free surface. Downes & Rockwell
(2003) employed a bidirectional apparatus, which maintained the cylinder vertical
during its interaction with an incident wave. In this investigation, the mass-damping
parameter was relatively small, with a value m∗ζ = 0.0062. The wave was of the
intermediate type, with very elongated particle trajectories, in contrast to the deep-
water wave of interest herein. Moreover, only a single (butterfly) trajectory of
the cylinder motion was considered; more basic orbital, in-line and figure-of-eight
trajectories, were not addressed. Finally, the streamline topology and associated critical
points were not examined.

Unresolved issues and objectives. Interaction of a deep-water wave with a cylinder
can give rise to complex forms of vortex formation. Determination of quantitative
patterns of the flow structure, over a range of Keulegan–Carpenter number KC,
with direct comparison of cases of the stationary cylinder and a cylinder free to
undergo bidirectional oscillations, has not been pursued. That is, depending upon the
trajectory of the cylinder oscillation, substantial departures of the quantitative flow
patterns from those associated with the stationary cylinder, may occur. Nevertheless,
depending upon the instant at which the cylinder trajectory is considered, the
intriguing possibility of correspondence of instantaneous flow patterns from the
oscillating cylinder with those of the stationary cylinder may be attainable. Of
course, the trajectory of the cylinder, say an elliptical versus in-line motion, is
expected to dictate the degree to which layers or clusters of vorticity tend to remain
attached to the periphery of the cylinder, as opposed to being shed from the cylinder
surface. These, as well as the foregoing features, are intimately related to the phase
relationship between the velocity Uc of the cylinder, the wave velocity Uw , and
thereby the relative wave velocity UR of the wave relative to the frame of the cylinder.
The foregoing characteristics have not been investigated in a systematic fashion
over a range of lower KC, with an emphasis on quantitative imaging of the flow
structure. The objective of the present investigation is to address these aspects using
a technique of quantitative imaging for the cases of both stationary and oscillating
cylinders.
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Figure 1. Schematic of the experimental facility for wave–structure interaction showing
bidirectional elastic cylinder system, laser position sensor system, and laser illumination and
image acquisition techniques.

2. Experimental system and techniques
2.1. Wave tank–cylinder system

Overviews of the experimental arrangement are given in figure 1. The wave tank had
a depth of 1018 mm, a width of 426 mm and a total length of 9300 mm. Water was
maintained at a level of 700 mm for all experiments. Waves of the desired frequency
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and amplitude were generated using a paddle-type wave generator with actively
controlled (forced) feedback, manufactured by Edinburgh Designs. The paddle is
constructed in the form of a wedge-shaped aluminium paddle. A piezoelectric force
transducer measures the load on the paddle and, via a feedback system, allows reflected
energy to be reduced via impedance matching. An absorbent wedge system at the
opposite end of the tank allowed, for the frequencies of interest in this investigation,
insignificant wave reflection, when the force-feedback wave generator was employed.

For the present experiments, a value of wave frequency fw = 1.12Hz was employed.
The wave amplitudes (half of the peak-to-peak amplitude of the wave motion) ranged
from 2.82 mm to 24.54 mm. All generated waves were deep-water waves, as verified by
independent quantitative imaging of the wave motion in the absence of the cylinder.
The orbital trajectories of the wave were determined to be circular, with a radius
that decreased exponentially with depth beneath the free surface. At a frequency of
fw = 1.12 Hz, corresponding to a wavelength λ=1.2 m, the wave amplitude was 0.86
of its value at the free surface at an elevation of 30 mm beneath the free surface.
The foregoing values of the wave frequency and wavelength, in conjunction with the
cylinder diameter, satisfy the deep-water wave criteria defined in Sarpkaya & Isaacson
(1981).

Vortex formation from the cylinder is a function of the Keulegan–Carpenter number
KC=Uw/fwD in which fw is the frequency of the wave, Uw is the peak velocity of the
wave and D is the diameter for the cylinder. In addition, it is necessary to account for
the Stokes number β = fwD2/ν = 404, in which v is kinematic viscosity; viscous diffu-
sion can play a significant role in the evolution of patterns of vorticity. For the present
experiments, the Reynolds number Re = (KC) β = UwD/ν varied from 215 to 2491.

As indicated in figure 1, the vertical cylinder was mounted on an elastic system
that allowed bidirectional motion. The cylinder was free to move in any direction in
the horizontal plane, owing to circumferentially invariant stiffness. The total length
of the cylinder was 1080 mm and the lengths of the submerged part of the cylinder
were 695 mm and 700 mm, respectively, for the oscillating and stationary cylinder
experiments. It had an outside diameter of 19 mm and a wall thickness of 0.25 mm.
This very thin wall provided a low mass of the cylinder mc = 49 g. The cylinder
extended to the floor of the wave tank with a gap of less than 5 mm between the
bottom end of the cylinder and the floor. This cylinder was rigidly attached to a
hover plate made of lightweight Plexiglas material. The combined weight of the hover
plate–cylinder arrangement was mc + mH = 434 g. The hover plate floated on top of
an air-bearing system, which involved a doughnut-like chamber with 240 small holes
of diameter 0.40 mm in its top surface. High-pressure air supplied to this chamber
resulted in vertical oriented minijets that maintained the bottom surface of the hover
plate at a distance of approximately 1 mm from the top surface of the air-bearing
system. Regulated compressed air at a pressure of 40 p.s.i.g. was transmitted to the
interior of a stationary annular air bearing. The cylinder was attached to a system of
four springs (figure 1). Each of these springs was independently calibrated and verified
to be linear over the range of deflection employed in the present experiment. The
spring constant of each spring was k = 0.011 Nmm−1. These springs were attached to
the cylinder with a small lightweight doughnut ring, which allows slipping between
the cylinder and the spring system, thereby preventing the springs from producing a
torsional load. Considering all of the foregoing components, the total effective mass
m of the cylinder system was m =454 g.

The natural frequency and logarithmic decrement of the free oscillation were
determined from transient response experiments. These experiments showed that
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the natural frequency in air was fna = 1.36 Hz in both the x and y directions. The
corresponding damping ratio was determined to be ζa = 0.0024. The natural frequency
in water is

fnw = fna

√
m

m + mA

, (1)

in which mA = C∗
Amd . The hydrodynamic mass coefficient C∗

A = 1, and md is the mass
of the displaced fluid. The values of mA and fnw are mA = 198 g and fnw = 1.13 Hz
(in water) for both the x and y directions. The coefficient C∗

A should not be confused
with the force coefficient that is in-phase with acceleration, typically determined from
force measurements. The corresponding values of mass ratio and damping coefficient
in water were determined using:

m∗ =
m

md

, (2)

ζw = ζa

√
m

m + mA

. (3)

The values of these parameters were m∗ = 2.3 and ζw =0.00198; therefore, m∗ζw =
0.0045 for both the x and y directions. The present experiments focus on the case
where the wave frequency fw is equal to the natural frequency fn of the cylinder
system. This condition is satisfied within 0.8 %.

2.2. Data acquisition system for bidirectional cylinder trajectory

Laser sensors were employed to obtain the instantaneous cylinder displacements.
Trajectories of the cylinder motion were measured using two sensors (figure 1).
Sensor signals resulting from the motion of the cylinder never reached the limits
of their corresponding sensing windows. Matlab software was used to calculate the
cylinder coordinates.

The cylinder position was determined with the aid of trigonometric relations by
using an in-house program, and the cylinder velocity was calculated from sequential
cylinder positions on the processed image.

2.3. Quantitative imaging systems

A technique of digital particle image velocimetry (DPIV) was employed to characterize
the instantaneous flow structure. Imaging was accomplished using a dual camera
system, in conjunction with a laser sheet, both of which are shown in figure 1. The
laser sheet was generated from a dual pulsed YAG system, having a maximum output
of 90 mJ per pulse, which had time delays ranging from �t = 2 ms to 9.5 ms for the
present experiment. The water was seeded with 17.8 µm, metallic coated particles,
which were essentially neutrally buoyant. A laser sheet of approximately 1.5 mm
thickness at the location of the vertical cylinder was generated using a combination
of spherical and cylindrical lenses at the head of the laser. This laser was located on
a three-dimensional traverse system so that it could be precisely aligned relative to
the cylinder. In order to ensure that the entire horizontal region about the cylinder
could be illuminated, the laser sheet was transmitted through a water cell in the
stainless steel cylinder at an elevation 30 mm below the mean surface level of the tank
(figure 1a). This water cell involved a Plexiglas segment of the cylinder having the
same diameter as the stainless steel cylinder and a wall thickness of 1.6 mm. It was
filled with distilled water, and had a total length of 13 mm.

Two CCD cameras were located under the wave tank in order to accommodate
the motion of the cylinder and to avoid obstructing the view owing to blockage
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by the bottom of the cylinder (figure 1). The distance between the camera lenses
was 85 mm. The cameras had a resolution of 1008 pixels × 1018 pixels. The distance
from the camera lenses to the laser sheet location was 875 mm. Images on either
side of the cylinder, acquired by the two cameras, were combined to provide a single
overview image by using an in-house program. The last grid column of the left-hand
side image and the first grid column of the right-hand side image were precisely
overlapped during image acquisition. For all experiments, a value of magnification
M = 1 : 9.12 was employed. This provided a field of view of 100 mm × 100 mm in
the plane of the laser sheet. Patterns of particle images were acquired at a rate
of 30 frames per second, thereby allowing 15 frame pairs per second. A frame-to-
frame cross-correlation technique was employed to determine the velocity fields. The
effective size of the interrogation window was 32 pixels × 32 pixels. The interrogation
area contained approximately 15 to 25 particle images in order to satisfy the high-
image density criterion. The effective grid size in the plane of the laser sheet, for
both left-hand and right-right images, was 1.754 mm × 1.754 mm. In order to satisfy
the Nyquist criterion, an overlap of 50 % was employed during the interrogation
process. This procedure yielded a total of 6670 vectors for the combined frame. These
patterns of velocity were, in turn, employed to construct instantaneous patterns of
vorticity and the corresponding streamline topology. It was then possible to compare
sequential images of the instantaneous flow structure at a given value of the KC
number for either the stationary or oscillating cylinder.

In-house software was used to evaluate and remove inappropriate velocity vectors,
caused by shadows, reflections, or laser sheet distortions in the flow field. A bilinear
interpolation algorithm was then applied to the flow field without the invalid vectors.
The field was then smoothed by a Gaussian weighted averaging technique. To
minimize distortion of the velocity field, a smoothing parameter of 1.3 was chosen.

Time-averaging of the PIV data was accomplished with in-house software, which
yielded mean (or time-averaged) values, root-mean-square (r.m.s.) values of velocity
and vorticity, as well as the Reynolds stress correlations. Three images, at the same
phase, were selected from the acquired sequence of 200 instantaneous images to obtain
phase-averaged patterns for the cases of the stationary and oscillating cylinders. The
intent of this type of averaging was to show the degree of deviation of representative
instantaneous images.

The factors that contribute to uncertainty of velocity measured using the PIV
technique are critically assessed by Adrian (1991), Raffel, Willert & Kompenhans
(1998) and Westerweel (1993). The digital PIV (DPIV) approach employed herein is
similar to that evaluated by Westerweel (1993); he concludes that an uncertainty of
velocity within 2 % is an appropriate estimate.

3. Wave interaction with stationary cylinder: instantaneous patterns of vorticity
and velocity

Patterns of instantaneous vorticity ω, velocity vectors V and normalized contours of
constant streamwise u∗ = u/Umax and transverse (cross-stream) v∗ = v/Umax velocity
components are given in figures 2 to 6 for a range of Keulegan–Carpenter number
KC. The symbol Umax represents the maximum wave velocity at each value of KC.
In all figures, N indicates the image number of a ciné sequence acquired during the
wave period, which included 14 instantaneous PIV images, extending from N = 1 to
N = 14. The image N =1 corresponds to the instant at which the wave velocity has
its maximum value in the direction of wave propagation.
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Figure 2. Patterns of instantaneous flow structure for a deep-water wave past a stationary
cylinder at KC= 0.53. At instant N =1, the instantaneous value of the wave velocity is at its
maximum value of Uw = 12.1mms−1. For instantaneous vorticity ω, [ω]min and �[ω] are both
0.3 s−1. For patterns of dimensionless instantaneous streamwise velocity component u∗ and
transverse component v∗, [u∗]min =[v∗]min = 0.05 and �[u∗] =�[v∗] = 0.025.

3.1. Symmetrical patterns without vortex shedding

The images of figure 2, representing KC= 0.53, focus on the region near the surface
of the cylinder. Image N = 1, which corresponds to the occurrence of the maximum
velocity UW of the wave motion, indicates the formation of positive and negative
clusters of vorticity over the bottom and top surfaces of the cylinder. Furthermore, at
this instant, very high magnitudes of streamwise velocity u∗ are centred at θ = 90◦ and
270◦. The patterns of v∗ show, in an approximate sense, symmetry of the contours in
each of four quadrants.

The pattern of vorticity clusters shown in N = 1 in figure 2 is generally similar to
previously related investigations of sinusoidally oscillating flow past a fixed cylinder
in the numerical simulations of Sun & Dalton (1996), Lin, Bearman & Graham
(1996), and Tatsuno & Bearman (1990), as well as an oscillating cylinder in quiescent
fluid visualized by Heinzer & Dalton (1969), all of which are for one-dimensional
oscillatory motion, but at different combinations of KC and β .

Taken together, the images of figure 2, which are not associated with vortex
shedding from the cylinder, provide a basis for interpretations at higher values of KC,
as described in the following.

3.2. Symmetrical patterns with shedding of small-scale vortices

At KC= 2.49, as shown in figure 3, the instantaneous pattern of vorticity undergoes
a fundamental change. Image N = 1 corresponds to the instant at which the wave
velocity Uw has its maximum amplitude in the direction of wave propagation; this
vector is indicated within the schematic of the cylinder at N = 1. For images N = 2 and
3, the magnitude of Uw is drawn to scale within the cylinder, thereby allowing cross-
comparison of values of Uw with the maximum value occurring at N =1. Furthermore,
as indicated at the beginning of this section, the image sequence over one cycle of the
wave oscillation extends from N = 1 to N = 14. Previously shed clusters of vorticity,
arising during the preceding wave cycle, are evident; they are designated as A and C

in images N = 2 and 3, and take the form of well-defined concentrations, with tails
of relatively distributed vorticity extending over the right-hand portion of the image.
Simultaneously, concentrations B and D become clearly defined in images N = 2 and
3, and at the left-hand side of the image, distributed tails of positive (solid line) and
negative (dashed line) vorticity clusters persist.

Over this time span, corresponding to images N = 1 to 3 in figure 3, the patterns of
u∗ and v∗ undergo substantial changes. At N = 1 and 2, u∗ is positive everywhere, and
at N = 3, negative pockets of u∗ develop adjacent to the cylinder at θ = 0◦ and 180◦.
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Figure 3. Patterns of instantaneous flow structure for a deep-water wave past a stationary
cylinder at KC=2.49. At instant N = 1, the instantaneous value of the wave velocity is at its
maximum value of Uw = 52.2 mm s−1. For instantaneous vorticity ω, [ω]min and �[ω] are both
0.75 s−1. For patterns of dimensionless streamwise velocity component u∗, [u∗]min = 0.025 and
�[u∗] = 0.05. For instantaneous transverse componentv∗, [v∗]min =0.075 and �[v∗] = 0.05.

Correspondingly, the pattern of v∗ transforms from an approximately symmetrical
structure in four quadrants to a significantly lower level of v∗ over the left half of the
cylinder, until at N =3, significant levels of v∗ occur only in the vicinity of θ = 180◦.

The pattern of vorticity at N = 2 in figure 3 is remarkably similar to that calculated
numerically via a Floquet analysis by Elston, Sheridan & Blackburn (2004), at different
values of KC and β . Furthermore, the numerical simulations of Sun & Dalton (1996),
Guilmineu & Queutey (2002) and Dütsch et al. (1998) all show similar patterns at
different combinations of KC and β . All of the foregoing investigations correspond
to one-dimensional oscillatory conditions, so the strong agreement with the present
results suggests that a sectional pattern of the flow structure owing to the oscillatory
orbital wave motion interacting with the cylinder can be effectively interpreted via
the pattern arising from one-dimensional motion.

3.3. Nominally symmetric patterns with swept back vortices

At KC= 5.06, represented in figure 4, the patterns of previously shed vorticity are
swept back in the opposite direction past the cylinder and, as a consequence, lead to
the remarkable pattern shown at N =1. Concentrations C and A are from the previous
cycle of the wave motion, while B and D are from the present cycle. At a later instant
N = 2, a rightward direction of the wave motion results in, first of all, concentrations
A and C moving away from the stack to the right. Simultaneously, concentration
D is partitioned into a segment D′ that moves with C, and a remaining segment
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Figure 4. Patterns of instantaneous flow structure for a deep-water wave past a stationary
cylinder at KC= 5.06. At instant N = 1, the instantaneous value of the wave velocity is at
its maximum value of Uw = 109.3 mm s−1. For instantaneous vorticity ω,[ω]min = 1.5 s−1 and
�[ω] = 2 s−1. For patterns of dimensionless instantaneous streamwise velocity component u∗

and transverse component v∗, [u∗]min = �[u∗] = 0.075 and [v∗]min = �[v∗] = 0.05.

D that remains adjacent to the cylinder. Continued development of this pattern of
vorticity in image N = 3 shows that concentration D′ is no longer detectable and
broader distributions of the vorticity clusters A and C dominate that region, while in
the vicinity of the cylinder, concentrations B and D have continued to accumulate
vorticity, as well as experiencing an increase of peak vorticity level. As the wave
velocity UW tends to zero, indicated in N = 4, concentrations B and D move away
from the plane of symmetry at θ = 180◦.

The corresponding patterns of u∗ and v∗ in figure 4 indicate substantial levels of
positive u∗ at instants N = 1 and 2, as well as high levels of v∗ in each of the four
quadrants. On the other hand, at instant N = 3, a negative pocket of u∗ sets in at
θ = 180◦ and, furthermore, the pattern of v∗ on the right-hand side of the cylinder
loses its symmetry. These general features persist at N = 4.
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Figure 5. Patterns of instantaneous flow structure for a deep-water wave past a stationary
cylinder at KC= 6.16. At instant N = 1, the instantaneous value of the wave velocity is at
its maximum value of Uw = 136.5mms−1. For instantaneous vorticity ω,[ω]min and �[ω] are
both 3 s−1. For patterns of dimensionless instantaneous streamwise velocity component u∗ and
transverse component v∗, [u∗]min = �[u∗] = 0.075 and [v∗]min = �[v∗] = 0.05.

Experimental visualization by Williamson (1985a), using a marker technique in a
one-dimensional oscillatory motion, indicates pairs of counter-rotating concentrations
of vorticity, which are apparently directly analogous to the concentrations A, B, C
and D indicated in image N = 1.

Note that the large-scale, elongated vortical structure B actually contains a number
of small-scale embedded concentrations of vorticity, which are representative of
the process of shear-layer transition. Comparison with previous images in the
sequence shows that the large-scale concentration B does not contain small-scale
concentrations, thereby indicating that the occurrence of transition phenomena in the
separating shear layer may occur only over a limited portion of the wave cycle.

3.4. Onset of asymmetrical large-scale vortex formation

At the value of KC= 6.16 shown in figure 5, image N = 1 shows pre-existing clusters
of vorticity A shed during a previous wave cycle; they have moved past the cylinder
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Figure 6. Comparison of instantaneous patterns at the same instant of wave cycle for values
of KC= 2.49, 5.06 and 6.16. For all KC, values of minimum and incremental vorticity of
dimensionless streamwise velocity component u∗ and dimensionless transverse velocity com-
ponent v∗ are the same as indicated in the captions of figures 3 to 5. For purposes of reference,
the magnitude of the instantaneous wave velocity is Uw = 74.1 mm s−1 at N = 3 for KC=6.16.

to the opposite side. The mirror image of this pattern of vorticity does not exist on the
opposite side of the wake. Clusters B and D are in the process of formation during
the present wave cycle. In subsequent images, N =2 and 3, concentrations B and D

develop further with an increasing level of asymmetry and, finally, in image N =4,
elongated vorticity layers B and D tend to form a Kármán-like street, together with
cluster A. Moreover, the negative vorticity cluster D extends over a larger portion of
the cylinder surface as the wave velocity decreases.

The corresponding pattern of velocity vectors V of figure 5 indicates that the
foregoing process is associated with formation of a downward directed jet, of
increasing spatial extent and intensity, in images N = 2 to 4. Correspondingly, the
patterns of dimensionless vertical velocity v∗ transform from a roughly symmetrical
pattern in image N =1, with high levels of v∗ in each quadrant, to a pattern that
is nearly dominated by a high level of downward directed v∗ in image N = 4. This
process is accompanied by transformations of the patterns of u∗, involving the onset
of a negative pocket of u∗ = 180◦ at N = 2, and eventually a predominant elongated
region of negative u∗ at N = 4.

Figure 6 gives a direct comparison of the patterns of vorticity at the same phase of
the wave cycle (N = 3) for different values of KC= 2.49, 5.06 and 6.16. At all values
of KC, a positive vorticity layer extends from the bottom surface of the cylinder to
the upper side of the near wake. The relevant concentrations of vorticity are B and C.
This extension of the positive layer across the wake, in effect, partitions the negative
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concentrations A and D. With increasing KC, the scale of concentration B increases
and the distance between the negative concentrations A and D increases as well.

Located immediately adjacent to each pattern of vorticity in figure 6 is the pattern
of instantaneous velocity vectors V . This pattern covers the right-hand part of each
vorticity image and thereby potentially reveals localized swirl patterns of velocity
vectors that would represent the vorticity concentrations. It is evident, however, upon
inspection of these patterns, that only certain of the concentrations A to D defined
in the patterns of vorticity are suggested in the patterns of velocity. Regarding the
patterns of u∗ shown in the third column of figure 6, it is evident that an increase
in the value of KC yields a pocket of negative streamwise velocity at sufficiently
high values of KC= 5.06 and 6.16; the very initial stages of formation of this pocket
are, however, evident in the u∗ image at KC= 2.49. As for the patterns of v∗, they
become severely asymmetrical in the wake region at KC= 5.06 and 6.16, relative
to approximately symmetrical patterns at KC= 2.49. This increased asymmetry is
associated with a tendency towards formation of large-scale vortical structures in the
near wake, evident from the patterns of vorticity at KC= 5.06 and 6.16.

Viewing together figures 3 to 6, in particular the patterns of instantaneous stream-
wise velocity u∗, it is evident that pockets of negative (dashed line) u∗ can occur.
In figure 3, for the relatively low value of KC= 2.49, such a negative pocket is
distinguishable only at the phase of the wave motion corresponding to N = 3, while
at larger values of KC= 5.06 and 6.16 in figures 4 and 5, respectively, these negative
pockets of u∗ can occur over a wider range of phase of the wave motion, i.e. at N =3
and 4 in figure 4 and N = 2 and 3 in figure 5. Generally speaking, these pockets or
clusters of negative u∗ immediately adjacent to the surface of the cylinder are an
indication of the extent of the separation bubble. It is evident that its existence and
scale can vary dramatically over the wave cycle.

Figure 7 shows a comparison of instantaneous (left-hand column) and phase-
averaged (right-hand column) patterns of vorticity, designated, respectively, as ω and
〈ω〉p . These phase-averaged patterns were determined using the approach described in
§ 2. It is evident that the predominant features of the patterns of ω and 〈ω〉p are closely
correlated, thereby reaffirming the use of instantaneous patterns as representations of
the flow physics.

4. Wave interaction with a stationary cylinder: steady-state patterns
The oscillatory wave motion past the cylinder is associated with an underlying,

steady-state pattern of vorticity. Figure 8 shows patterns of averaged vorticity 〈ω〉 for
the range of KC addressed herein. At the lowest value of KC= 0.53, ordered patterns
of 〈ω〉 were not clearly evident; therefore, this KC is not represented in figure 8. At
KC= 2.49, small-scale concentrations at the surface of the cylinder are bounded by
relatively large-scale, elongated clusters of opposite vorticity. These clusters contain
a vorticity concentration in the region close to the surface of the cylinder, and show
decreasing levels of essentially distributed vorticity away from the cylinder surface. At
KC= 5.06, the clusters of vorticity adjacent to the cylinder surface show a substantial
increase in scale and level of peak vorticity. Such concentrations are also bounded
by regions of vorticity of opposite sign that extend a significant distance away from
the surface of the cylinder. These outer clusters of vorticity have a substantially
reduced level of peak vorticity, relative to the outer clusters at KC= 2.49. Moreover,
the clusters at KC= 5.06 are distributed over a region of significantly larger extent.
Finally, at KC= 6.16, the concentrations of vorticity immediately adjacent to the
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Figure 7. Comparison of instantaneous (left column) and phase-averaged patterns (right
column) of vorticity. Minimum and incremental values at each value of KC are the same as
given in figures 3 to 5. For purposes of reference, magnitude of instantaneous wave velocity is
Uw = 74.1 mm s−1 at N = 3 for KC= 6.16.

cylinder have a somewhat larger spatial extent and higher peak vorticity values than
those at 5.06. The clusters of vorticity in the outer region away from the cylinder are,
however, less well defined than at lower values of KC.

Patterns of root-mean-square vorticity ωrms are given in the middle column of
figure 8. The common feature, over the entire range of KC, is four identifiable
clusters, or concentrations, of ωrms , which are distributed over the four quadrants.
At low KC, they tend to appear roughly near the centre of each quadrant, and for
increasing KC, move closer to θ = 0◦ and 180◦.

Patterns of the Reynolds stress correlation 〈u′v′〉/U 2
m are given in the right-hand

column of figure 8. Defined contours extend well away from the surface of the
cylinder, and the spatial extent of each of these contours significantly exceeds the
extent of the vorticity concentrations adjacent to the surface of the cylinder.

5. Self-excited oscillations of the cylinder due to wave interaction: trajectories
If the cylinder is not held in a stationary position, but allowed to undergo self-

excited vibrations, several types of trajectory are generated. A basic form of trajectory
is an ellipse inclined with respect to the direction of the wave motion. The build-
up from the cylinder at rest to the steady-state limit cycle of the oscillation is
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Figure 8. Patterns of time-averaged vorticity 〈ω〉, root-mean-square vorticity ωrms and aver-
aged Reynolds stress correlation 〈u′v′〉/U 2

m for indicated values of KC. For instantaneous vorti-
city ω, at KC=2.49, 5.06 and 6.16, respective values of [〈ω〉]n = 0.4, 1.0 and 1 s−1 and �[〈ω〉] =
0.2, 0.5 and 0.75 s−1. For root-mean-square vorticity ωrms , at KC= 2.49, 5.06 and 6.16, respective
values of [ωrms]min = 1.5, 4 and 6 s−1 and �[ωrms] = 0.5, 0.75 and 1.0 s−1. For Reynolds stress
correlation 〈u′v′〉/U 2

m, at all values of KC, [〈u′v′〉/U 2
m]min and �[〈u′v′〉/U 2

m] are both 0.025.

shown in figure 9(a). Figure 9(a) (i) shows approximately the first seven cycles of
oscillation, which results in a sequence of nearly horizontal, highly elongated ellipses.
They eventually culminate in an ellipse that has a peak amplitude of nearly 0.2D.
Figure 9(a)(ii) shows not only the initial trajectories (figure 9a(i)), but also the sequence
that leads to the eventual limit-cycle oscillation. As indicated, the elongated, nearly
horizontal elliptical trajectory of figure 9(a)(i) rotates, and becomes wider, until the
limit cycle is attained. This limit cycle, which is shown in figure 9(a)(iii), corresponds
to approximately 120 wave cycles.

Figure 9(b) provides an overview of the steady-state oscillation cycles for the range
of KC considered herein. At the lowest values of KC= 0.53 and 2.49, approximately
elliptical forms of trajectories are generated. At KC= 2.49, however, a second
admissible trajectory is attainable, depending upon the initial conditions and history
of development during the build-up phase of the oscillation. This cycle is nearly
in-line. Furthermore, a predominantly in-line pattern occurs at KC= 5.06. For the
highest value of KC= 6.16, the pattern suggests a figure-of-eight trajectory.

Figure 9(c) shows the limit-cycle trajectories over approximately the last two cycles
of oscillation. The trajectories at KC= 0.53 and 2.49 are represented well by the
steady-state limit cycles of figure 9(b), extending over 120 cycles. At KC= 2.49, as well
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Figure 9(a,b). For caption see facing page.
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Figure 9. (a) Onset of the elliptical limit-cycle trajectory of an elastically mounted cylinder in
a deep-water wave: (i) first seven cycles of oscillation starting from cylinder rest; (ii) trajectories
of oscillation cycles starting from rest to attainment of steady-state elliptical limit cycle; and (iii)
steady-state limit cycle corresponding to superposition of approximately 120 cycles. KC= 0.53.
(b) Steady-state limit-cycle trajectories for indicated values of KC. For all values of KC, a
total of approximately 120 oscillation cycles are indicated. (c) Limit-cycle trajectories showing
the final two cycles of oscillation for indicated values of KC.

as KC= 5.06, the trajectories of figure 9(c) are nearly aligned with the x-axis. At
KC= 6.16, a figure-of-eight trajectory is clearly evident. It is evident that the patterns
of figure 9(b), for values of KC= 2.49, 5.06 and 6.16, incorporate modulations of the
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Figure 10. Patterns of instantaneous flow structure during the oscillation cycle of a cylinder
at KC= 0.53. At instant N = 1, the instantaneous value of the wave velocity is at its maximum
value of Uw = 11.5 mm s−1. For instantaneous vorticity ω,[ω]min and �[ω] are both 0.6 s−1.
For patterns of dimensionless instantaneous streamwise velocity component u∗ and transverse
component v∗, [u∗]min= [v∗]min = �[u∗] = �[v∗] = 0.1.

limit-cycle trajectories about the relatively well-defined end-state trajectories given in
figure 9(c).

6. Self-excited oscillations of the cylinder owing to wave interaction: patterns of
flow structure in relation to the trajectory and relative velocity of the wave

6.1. Elliptical trajectory of cylinder

Figure 10 shows, for KC= 0.53, patterns of instantaneous vorticity ω, streamline ψ

topology and total velocity vectors V , as well as the dimensionless velocity components
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u∗ and v∗. The elliptical trajectory is represented at the interior of each cylinder, and
the instantaneous position of the cylinder is designated by a black dot. On the images
of streamline ψ topology, the instantaneous velocity UW of the wave, the cylinder
velocity VC , and the relative velocity VR of the wave with respect to the cylinder are
indicated for each instantaneous position of the cylinder.

Consider, first of all, the patterns of instantaneous vorticity. By examining the
sequence N = 1 to N = 9, it is evident that, as the cylinder moves around its elliptical
trajectory, the layers of vorticity A and B adjacent to the cylinder surface rotate
about the cylinder. Although these layers A and B remain predominantly distributed,
pronounced concentrations of vorticity are evident at certain instants during the wave
cycle. For example, at N = 3, layer A can be considered to involve two subconcen-
trations designated as A, and likewise for layer B .

If we consider the patterns of instantaneous streamline ψ topology, as given in the
second column of figure 10, severe transformations occur for successive values of N .
By directly comparing the patterns of ψ with the velocity vectors V , given in the third
column, it is possible to see that a well-defined bubble exists at all values of N . This
bubble involves streamlines that are initially oriented away from the cylinder surface,
then towards the surface. It should be emphasized that each of these streamlines does
not necessarily indicate a process of separation, followed by reattachment. Rather, the
streamline pattern within the bubble, which is dependent upon the reference frame,
serves as a guide for interpretation of the patterns of vorticity layers that rotate
around the periphery of the cylinder. At N = 1, this bubble extends over the portion
of the cylinder surface from approximately θ = 310◦ to 33◦; θ is defined in the top row
of images. Then, at larger values of N = 3, 5, 7 and 9, it extends over the following
values of θ : 340◦ � θ � 215◦; 37◦ � θ � 215◦; 107◦ � θ � 205◦; and 145◦ � θ � 10◦. This
bubble therefore rotates about the surface of the cylinder as it moves on its elliptical
trajectory. At any given instant N , it is generally coincident with the central region
of the negative layer of vorticity B . Furthermore, an additional bubble is evident at
instant N = 3. It extends over 215◦ � θ � 322◦, and is generally coincident with the
positive layer of vorticity A. While the instantaneous velocity UW of the wave is
smallest at N = 5, the cylinder velocity VC and the relative velocity VR of the wave
with respect to the cylinder have taken their maximum values. The development of
these bubble patterns is associated with the patterns of u∗ and v∗ given in the fourth
and fifth columns of figure 10.

At a larger value of KC= 2.49, the flow structure takes the form shown in figure 11.
As the cylinder moves about its elliptical trajectory, the patterns of vorticity rotate
about the surface of the cylinder. Vorticity layer C rotates to an angle of approximately
l80◦ in images N = 2 to 10. On the other hand, layer D, which is clearly defined at
N = 2 and 4, departs from the surface of the cylinder at N = 6 and rapidly degenerates
at subsequent instants. Vorticity clusters A and B , which were formed earlier and
have departed from the surface of the cylinder, appear at the outer boundary of layer
C in images N = 2, 4 and 6, 2 to 8; in essence, they rotate about the cylinder with
concentration C. The distinguishing feature of the patterns of vorticity at this value of
KC= 2.49, relative to those at KC= 0.53 in figure 10, is the persistence of previously
shed layers of vorticity exterior to those immediately adjacent to the surface of the
cylinder. If we consider image N = 8 in figure 11, it is possible to discern four layers
of vorticity in the lower right-hand region of the image, starting with C along the
surface, then A, followed by two other unmarked layers.

Patterns of streamline topology, in figure 11, indicate the existence of a separation
bubble in the plots of ψ , whose interpretation is aided with the patterns of V at
instants N = 4, 6 and 10. A high degree of correlation exists between the angular
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Figure 11. Patterns of instantaneous flow structure during the oscillation cycle of a cylinder
at KC=2.49. At N = 2, the magnitude of the instantaneous wave velocity is Uw = 49.6 mm s−1.
For instantaneous vorticity ω,[ω]min and �[ω] are both 1.5 s−1. For patterns of dimensionless
instantaneous streamwise velocity component u∗ and transverse component v∗, [u∗]min =
[v∗]min = �[u∗] = �[v∗] = 0.075.

positions of the large-scale streamline bubble on the cylinder surface and the relative
velocity vector VR; both rotate sequentially in successive images by approximately
the angular displacement. In turn, the streamline bubble rotation is in accord with
the rotation of the corresponding vorticity layer about the cylinder surface. This
bubble rotates about the cylinder in accord with the vorticity layer C. Patterns of
the velocity components u∗ and v∗ are severely distorted with increasing values of
N , in accord with the rotation of the bubble-like pattern about the surface of the
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cylinder. Extrema (peak values) of clusters of u∗ contours adjacent to the surface
of the cylinder generally define the central portions of the aforementioned vorticity
layers and streamline bubbles along the surface. That is, at N = 2 and 4, the extrema
of positive (solid line) contours are evident along the upper surface of the cylinder,
and at N =6 to 10, where the contours take on negative values, the positions of the
extrema rotate towards the bottom surface of the cylinder, and continue to track the
centres of the bubbles and the vorticity layers.

6.2. In-line trajectory

At KC= 2.49, an alternative trajectory in the form of a nearly in-line oscillation is
attainable, as indicated in figure 3. The detailed flow structure associated with this
essentially in-line motion is given in figure 12. Regarding the patterns of vorticity,
at N =2, concentrations B and C form from the cylinder, and at N = 4, these
concentrations form a stack-like arrangement involving A, B, C and D. At this
instant, the relative wave velocity VR is nearly maximum to the right-hand side. This
stacked pattern is remarkably similar to that from the stationary cylinder, shown in
image N =1 in figure 4, for which KC= 5.06. Furthermore, the computational results
of one-dimensional oscillating flow past a fixed circular cylinder of Zhang & Dalton
(1999) display a similar pattern at different values of KC and β .

The combination of the wave velocity UW and cylinder velocity VC apparently yield
a higher effective value of VR , for purposes of vortex formation, than that based
solely on the maximum amplitude of the wave velocity UW . Furthermore, the vorticity
pattern at N = 6 in figure 12 broadly resembles that at N =2 in figure 4. That is,
concentrations B and C continue to develop adjacent to the base of the cylinder,
while previously shed concentrations A and D move away from the cylinder, i.e.
depart from the ends of the stacked arrangement. In the meantime, vorticity clusters
E and F persist at the left-hand side of the cylinder. At later instants of time N = 8,
10, the direction of the relative wave velocity VR reverses and the formation of new
concentrations of vorticity G and H commence.

Regarding the patterns of streamline ψ topology in figure 12, when separation
bubbles form, they appear to do so in an approximately symmetrical fashion, as
indicated in the ψ patterns of images N = 4 and N = 10 in figure 12. These bubble
patterns form when the magnitude of the relative wave velocity VR approximately
attains its maximum value.

Such bubble patterns are consistent with pronounced layers of vorticity over the
upper and lower surfaces of the cylinder at N = 4 and 10. Concerning the patterns of
u∗ and v∗, contours of these quantities are partitioned in the four quadrants and tend
to show mirror image patterns with respect to either a horizontal or vertical reference
line, the variation in peak values of sets of contours of u∗ and v∗ not withstanding.
At all of the values of N in the series of figure 12, this is not the case.

At a higher value of KC= 5.06, represented in figure 13, we again see the formation
of a stacked arrangement of vorticity concentrations A, B, C and D at instant N = 2,
which approximately corresponds to the maximum relative wave velocity VR . This
pattern is generally similar to that at N = 4 in figure 12. At a later instant, the stacked
arrangement transforms to a pattern involving asymmetrical clusters B and C from
the surface of the cylinder, while D departs to the right.

The corresponding pattern of streamline ψ topology in figure 13 indicates bubble-
like regions on the lower and upper surfaces of the cylinder, though by simultaneously
considering the velocity field V at N = 4 and N = 10, the bubble pattern is
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Figure 12. Patterns of instantaneous flow structure during the oscillation cycle of a cylinder
at KC=2.49. At N = 2, the magnitude of the instantaneous wave velocity is Uw = 47.2 mm s−1.
For instantaneous vorticity ω,[ω]min and �[ω] are both 1 s−1. For patterns of dimensionless
instantaneous streamwise velocity component u∗ and transverse component v∗, [u∗]min =
[v∗]min = �[u∗] = �[v∗] = 0.075.

asymmetrical, in accord with the asymmetry of the vorticity layers B and C from the
surface of the cylinder.

The patterns of u∗ and v∗ in figure 13 show a pronounced region of negative u∗,
which marks the initial stage of large-scale antisymmetrical vortex formation in the
wake of a cylinder, evident by comparison with a pattern of instantaneous vorticity
ω at N = 4. This transformation to a high degree of asymmetry of the near-wake
vortices, which is evident at N = 6 in the patterns of ω, in turn corresponds to a
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Figure 13. Patterns of instantaneous flow structure during the oscillation cycle of a
cylinder at KC= 5.06. At N = 2, the magnitude of the instantaneous wave velocity is
Uw = 82.4 mm s−1. For instantaneous vorticity ω, [ω]min and �[ω] are both 3 s−1. For patterns
of dimensionless instantaneous streamwise velocity component u∗ and transverse component
v∗, [u∗]min = [v∗]min = �[u∗] = �[v∗] = 0.075.

pattern of high-level vertical velocity v∗ at N = 6 in the fifth column of images of
figure 13.

6.3. Elliptical and predominantly in-line trajectories: instantaneous and
phase-averaged patterns

Figure 14 provides a comparison of instantaneous and phase-averaged patterns of
vorticity ω and 〈ω〉p , as well as streamlines ψ and 〈ψ〉p, at each value of KC
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Figure 14. Comparison of instantaneous and phase-averaged patterns of vorticity and
streamline topology for the oscillating cylinder at an instant corresponding to approximately
the same streamwise position of the oscillation cycle. Minimum and incremental levels at each
value of KC are the same as defined in figures 10 to 13 for KC= 0.53 to 5.06; levels at
KC=6.16 are the same as at 5.06.

considered herein and, furthermore, at approximately the same streamwise position
of the cylinder trajectory. This streamwise position is designated by the solid dot in
each of the trajectories shown in the patterns of vorticity ω. In essence, it corresponds
to the initial stage of the leftward motion of the cylinder on its trajectory, irrespective
of whether this trajectory is of an elliptical, linear, or figure-of-eight form. Comparison
of each instantaneous pattern with its respective phase-averaged counterpart shows
consistency of the major features of the patterns of vorticity, as well as the existence
and approximate locations of critical points of streamline topology.

This set of images shown in figure 14 provides the opportunity to compare and
define the major features of the flow pattern over the range of KC. At KC= 0.53,
pronounced layers of vorticity occur about the upper and lower surfaces of the
cylinder, and only low-level residual indications of vorticity are evident. They are
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shed from a previous cycle(s) of the oscillations (see low-level concentrations of ω

immediately above layer B).
At KC= 2.49 (elliptical trajectory), shown in the second row of figure 14, clusters

of vorticity shed during the previous cycle of oscillation, designated as A and B ,
are evident; that is, they retain their identity after departure from the surface of the
cylinder. These previously shed clusters A and B appear exterior to the distributed
layer C. Generally speaking, however, no single large-scale cluster of vorticity departs
significantly from the vicinity of the cylinder, i.e. it is not shed into the wake region
during any part of the oscillation cycle.

In contrast, at KC= 2.49 (in-line trajectory), in the third row of figure 14, cluster
C, which was shed during the preceding cycle, will, at later instants of time, move to
a region to the right of the oscillating cylinder, as already depicted in figure 12. At
KC= 5.06, shown in the fourth row of figure 14, a similar movement of cluster C, shed
during a previous cycle to a substantial distance to the right of the cylinder, is already
evident in the pattern of vorticity ω and, as shown in the sequence of figure 13, the
cluster D will eventually be shed from the cylinder and move about its upper surface,
towards the left-hand side, and into the wake region during the next half-cycle of the
motion. Finally, the pattern of vorticity ω at KC= 6.16 in the fifth row of figure 14
shows a very similar form, including the previously shed concentration C and, as
is evident by inspection of the complete sequence (not shown herein), cluster D is
eventually shed to the left of the cylinder.

Remarkably, all of the patterns of ψ shown in figure 14 exhibit bubble-like regions,
involving lines of separation and attachment. In a general sense, the locations of
these bubble-like regions are consistent with pronounced layers or clusters of vorticity
immediately adjacent to the cylinder and, furthermore, a given bubble contains
vorticity of only a single sign.

7. Concluding remarks
This investigation focuses on characterization of the detailed flow patterns due to

a vertical cylinder in a deep-water wave. Both the stationary and oscillating cylinder
are considered. The elastic mounting system of the vertical cylinder allows very
small values of the mass-damping ratio, as well as bidirectional oscillations, with no
preference of stiffness or damping in the circumferential direction. Emphasis is on
the range of KC extending from approximately 0.5 to 6; low and high values of KC
within this range are referred to in the summaries that follow.

7.1. Instantaneous patterns of flow structure: stationary cylinder

For the case of the stationary cylinder, the flow patterns indicate remarkable symmetry
with respect to the plane of symmetry of the cylinder, provided the value of KC is
maintained sufficiently low. At high values of KC, however, within the range of
KC= 0.5 to 6, the patterns of instantaneous vorticity during the wave cycle take on
generic complex forms involving, for example, stacking of vorticity clusters across
the near wake of the cylinder, as well as pronounced alternating shedding of large-
scale vortical structures. All of these patterns from the stationary cylinder provide a
basis for interpretation of the vorticity patterns and streamline topology arising from
self-excited oscillations of the cylinder.

7.2. Time-averaged patterns of flow structure: stationary cylinder

The sequences of vorticity patterns during the wave oscillation cycle past the stationary
cylinder, give rise to well-defined time-averaged patterns of the flow structure. Patterns
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of time-averaged vorticity 〈ω〉 show, at low KC, elongated layers on either side of the
cylinder, and localized concentrations of vorticity immediately adjacent to its surface.
At high values of KC within the range KC= 0.5 to 6, the pattern involves higher-level
concentrations of vorticity near the surface of the cylinder; outboard of each of the
respective concentrations, larger-scale lower-level patterns of vorticity of opposite
sign exist in each respective quadrant. Corresponding patterns of root-mean-square
vorticity ωrms show a transformation from relatively distributed clusters at low KC,
to well-defined concentrations at larger KC; these concentrations tend to occur close
to the line of symmetry of the cylinder. Finally, patterns of time-averaged Reynolds
stress correlation 〈u′v′〉/U 2

m show, for all values of KC, remarkably similar patterns;
peak values occur very close to the surface of the cylinder, obviously owing to the
phase relationship between the streamwise u′ and transverse v′ fluctuations.

7.3. Trajectories of oscillating cylinder

Trajectories of the cylinder oscillation have been defined over the entire range of KC
considered herein. At the lowest values of KC, the trajectory is a limit cycle in the form
of an inclined ellipse; the transient development of the cylinder, starting from rest, has
been characterized over a large number of wave cycles. At a critical value of KC, two
admissible forms of the cylinder trajectory are evident: the aforementioned elliptical
and a predominantly in-line mode. At high values of KC within the range KC= 0.5
to 6, the cylinder undergoes predominantly in-line motion. It therefore appears that
a transitional state of the trajectory exists, from a predominantly elliptical trajectory
at low KC to a predominantly in-line trajectory at higher values of KC. In this
transitional state, elliptical and in-line trajectories are admissible.

7.4. Patterns of instantaneous flow structure: oscillating cylinder

Patterns of instantaneous vorticity ω, streamline topology ψ , as well as patterns of
velocity vectors V and contours of constant streamwise u∗ and transverse v∗ velocity
components, have been determined in relation to the instantaneous location of the
cylinder on its trajectory. In addition, these patterns are interpreted in conjunction
with the instantaneous wave velocity Uw , the cylinder velocity VC , and the relative
velocity VR of the wave with respect to the cylinder. At low values of KC, for
which the trajectory is elliptical, the vorticity layers are predominantly confined to
the immediate vicinity of the cylinder, i.e. no clearly defined shedding occurs into the
wake region. Well-defined clusters of positive and negative vorticity rotate about the
cylinder, in accord with its elliptical trajectory, and therefore rotation of the relative
velocity vector VR . Furthermore, bubble-like patterns of streamlines are prevalent;
each bubble contains nested streamlines that separate from, then reattach to the
surface of the cylinder. The rotation of such bubbles about the surface of the cylinder
is in accord with the aforementioned clusters of vorticity ω. The consequence of
elevated, but still low KC, at which the elliptical trajectory is still maintained, is to
allow clusters of vorticity shed during the previous cycle(s) to remain in the immediate
vicinity of the cylinder.

In contrast to the elliptical trajectory of the cylinder, in-line trajectories, which
occur at high values of KC within the range KC= 0.5 to 6, yield distinctly different,
but generic classes of vorticity patterns; many of them are directly analogous to
those occurring for the case of the stationary cylinder, and arise only for particular
combinations of Uw, Vc and VR . An important feature, for all of these values of KC,
is the sweeping of a previously shed concentration of vorticity from one side of the
cylinder to the opposite side, and into its near-wake region. At all values of KC, at
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least one such sweep event occurs; at sufficiently high KC, two such events occur
during the wave cycle.

7.5. Spanwise variation of flow patterns: possibilities and consequences

For the case of the deep-water wave investigated herein, the value of the KC
number rapidly decreases along the span of the cylinder. The maximum value occurs
immediately beneath the free surface, and at sufficiently large depth, a value of zero
occurs. This spanwise variation has not been considered in the present investigation.
Rather, a reference location close to the free surface, where the flow is highly
energetic, has been taken to represent the predominant features of vortex formation
and development. Interpretation of the quasi-two-dimensional patterns of vortex
formation at this reference location is aided by closely related investigations of wave
interaction with a stationary cylinder (Ozgoren & Rockwell 2004; Yang & Rockwell
2004), which address: (i) patterns of the spanwise variation of the three-dimensional
flow structure; (ii) magnitude of the spanwise vorticity associated with quasi-two-
dimensional vortex formation, relative to streamwise (wave direction) vorticity; and
(iii) phase-referenced (locked) vs. modulated patterns of quasi-two-dimensional vortex
formation as indicators of phase-locked three-dimensional patterns along the span of
the cylinder.

Regarding interpretation of the flow patterns on a planar (horizontal) cut through
the stationary cylinder, it is important to recognize, on the basis of the investigation
of Yang & Rockwell (2004), that the peak levels of spanwise (vertically oriented)
vorticity ωz are at least an order of magnitude larger than the peak levels of
streamwise (wave direction) vorticity ωx . Owing to these relatively low levels of ωx

(and thereby circulation), sectional cuts of the flow structure, on planes orthogonal
to the axis of the cylinder, provide a reasonable representation of the quasi-two-
dimensional flow structure. (It should be noted that qualitative visualization, which
has been employed extensively at low KC, indicates three-dimensionality of the
flow, but does not indicate this remarkable difference of magnitude of orthogonal
vorticity components.) Of course, with increasing distance from the free surface,
the contributions to the cylinder loading will markedly decrease, because the peak
vorticity ωz, as well as the overall strength and phasing of the quasi-two-dimensional
vortices, are substantially attenuated. For the present experiments, the total length
of the cylinder Lcyl , normalized by its diameter D, is Lcyl/D = 55.1. The experiments
of Yang & Rockwell (2004) and Ozgoren & Rockwell (2004) for the case of the
stationary cylinder indicate that the spanwise extent of significant concentrations of
ωx , which is an indication of the extent over which pronounced shedding of spanwise
vorticity ωz occurs, is detectable over a distance of 10D to 12D from the free-surface
at a value of KC= 7. Shedding therefore occurs over approximately one-fifth of the
cylinder span. Moreover, contours of constant cross-wake velocity v(phase-averaged
patterns) indicate that the shedding process, over this distance of 10D to 12 D, does
not alternate sign, unlike cases of higher KC number.

Concerning the response of the oscillating (elastically mounted) cylinder, it is
desirable to account fully for the spanwise variation of the flow structure, i.e. the
instantaneous patterns of vortex formation at successively larger depths. It is expected,
however, that the limit-cycle oscillations of the cylinder will tend to enhance the
spanwise correlation of the flow structure. The instantaneous and phase-averaged
patterns of quasi-two-dimensional vortex formation from the oscillating cylinder,
shown in figure 14 for an inline trajectory, are in close agreement; when this is
not the case, as shown by Ozgoren & Rockwell (2004) and Yang & Rockwell (2004),
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significant variations (with space and time) of the spanwise flow structure occur during
successive cycles of the wave motion. Generally speaking, the precise nature of the
spanwise three-dimensionality, as a function of both the type of limit-cycle trajectory
and the instantaneous location along the trajectory, requires further investigation.

A further point for investigation is the effect of the wavelength-to-depth ratio
of the deep-water wave. As indicated, the present study is for the limiting case
where pronounced shedding of vorticity (for the reference case of the stationary
cylinder) occurs over a relatively small fraction (one-fifth) of the cylinder span. The
wavelength-to-depth ratio may influence the cylinder trajectory. The basic types of
trajectory of the cylinder motion, i.e. in-line, figure-of-eight, and orbital (elliptical)
observed herein are, however, generic to a wide range of wave–cylinder parameters
in related studies cited in § 1, where emphasis has not been on the associated flow
structure. The present investigation establishes a one-to-one relationship between the
phase-repetitive patterns of vortex formation on the reference plane immediately
beneath the free surface and the trajectories of the cylinder motion.
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